Si consideri il problema PL:

	$z = x_1 + x_2 Max!$				
	s. a				
(1)	\mathbf{x}_1	+ ;	X 2	≤2	0
(2)	\mathbf{x}_1	- 2	K 2	<	0
(3)			X 2	≤	15
		\mathbf{x}_1 ; \mathbf{x}_2	2≥	0	

- a. Se ne scriva il problema duale;
- b. lo si risolva graficamente o analiticamente;
- c. utilizzando il teorema dello scarto complementare si ricavi la soluzione ottima del problema duale.
- a. Si consideri il problema:

	$z = 3x_1 + 4x_2 + x_3 + x_4$ Max!
	s. a
(1)	$\mathbf{x}_1 - \mathbf{x}_2 + \mathbf{x}_3 \qquad = 2$
(2)	$x_1 + x_3 + 2x_4 = 5$
	$x_1, x_2, x_3, x_4 \geq 0$

Si stabilisca, utilizzando il teorema dello scarto complementare se la soluzione $\mathbf{x} = [0, 0, 2, 3/2]$ è la sua soluzione ottima

b. Si consideri il problema:

	$z = -x_1 + x_2 + 2x_3$ Max!
	s. a
(1)	$x_2 - 2x_3 \geq 1$
(2)	$-x_1 - x_2 + x_3 \ge 1$
	$x_1, x_2, x_3, \geq 0$

Si mostri, utilizzando la teoria della dualità che è inconsistente.